metabelian, supersoluble, monomial
Aliases: C62.91D6, (S3×C6).16D6, C33⋊6D4⋊8C2, C32⋊7D4⋊5S3, C33⋊4Q8⋊9C2, C33⋊24(C4○D4), C3⋊Dic3.38D6, C3⋊4(D6.4D6), (C3×Dic3).18D6, C3⋊4(C12.D6), (C32×C6).54C23, (C3×C62).25C22, C32⋊17(D4⋊2S3), C33⋊5C4.17C22, (C32×Dic3).18C22, C6.64(C2×S32), (C2×C6).11S32, (C3×C3⋊D4)⋊2S3, D6.4(C2×C3⋊S3), C3⋊D4⋊1(C3⋊S3), (S3×C3⋊Dic3)⋊5C2, (Dic3×C3⋊S3)⋊4C2, (C2×C3⋊S3).36D6, C22.3(S3×C3⋊S3), (C2×C33⋊5C4)⋊6C2, (C3×C32⋊7D4)⋊1C2, C6.17(C22×C3⋊S3), (C32×C3⋊D4)⋊6C2, (S3×C3×C6).17C22, Dic3.6(C2×C3⋊S3), (C6×C3⋊S3).28C22, (C3×C6).109(C22×S3), (C3×C3⋊Dic3).21C22, C2.19(C2×S3×C3⋊S3), (C2×C6).6(C2×C3⋊S3), SmallGroup(432,676)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.91D6
G = < a,b,c,d | a6=b6=c6=1, d2=b3, ab=ba, cac-1=ab3, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=c-1 >
Subgroups: 1472 in 304 conjugacy classes, 68 normal (32 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, Q8, C32, C32, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3⋊D4, C3×D4, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C62, C62, C62, D4⋊2S3, S3×C32, C3×C3⋊S3, C32×C6, C32×C6, S3×Dic3, D6⋊S3, C32⋊2Q8, C3×C3⋊D4, C3×C3⋊D4, C32⋊4Q8, C4×C3⋊S3, C2×C3⋊Dic3, C32⋊7D4, C32⋊7D4, D4×C32, C32×Dic3, C3×C3⋊Dic3, C33⋊5C4, S3×C3×C6, C6×C3⋊S3, C3×C62, D6.4D6, C12.D6, S3×C3⋊Dic3, Dic3×C3⋊S3, C33⋊6D4, C33⋊4Q8, C32×C3⋊D4, C3×C32⋊7D4, C2×C33⋊5C4, C62.91D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, S32, C2×C3⋊S3, D4⋊2S3, C2×S32, C22×C3⋊S3, S3×C3⋊S3, D6.4D6, C12.D6, C2×S3×C3⋊S3, C62.91D6
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 22 29 19 31 34)(2 23 30 20 32 35)(3 24 28 21 33 36)(4 14 9 12 16 25)(5 15 7 10 17 26)(6 13 8 11 18 27)(37 47 53 40 44 50)(38 48 54 41 45 51)(39 43 49 42 46 52)(55 67 65 58 70 62)(56 68 66 59 71 63)(57 69 61 60 72 64)
(1 41 32 49 28 44)(2 39 33 53 29 48)(3 37 31 51 30 46)(4 72 17 55 8 63)(5 70 18 59 9 61)(6 68 16 57 7 65)(10 67 13 56 25 64)(11 71 14 60 26 62)(12 69 15 58 27 66)(19 38 23 52 36 47)(20 42 24 50 34 45)(21 40 22 54 35 43)
(1 25 19 9)(2 27 20 8)(3 26 21 7)(4 29 12 34)(5 28 10 36)(6 30 11 35)(13 23 18 32)(14 22 16 31)(15 24 17 33)(37 60 40 57)(38 59 41 56)(39 58 42 55)(43 65 46 62)(44 64 47 61)(45 63 48 66)(49 67 52 70)(50 72 53 69)(51 71 54 68)
G:=sub<Sym(72)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,22,29,19,31,34)(2,23,30,20,32,35)(3,24,28,21,33,36)(4,14,9,12,16,25)(5,15,7,10,17,26)(6,13,8,11,18,27)(37,47,53,40,44,50)(38,48,54,41,45,51)(39,43,49,42,46,52)(55,67,65,58,70,62)(56,68,66,59,71,63)(57,69,61,60,72,64), (1,41,32,49,28,44)(2,39,33,53,29,48)(3,37,31,51,30,46)(4,72,17,55,8,63)(5,70,18,59,9,61)(6,68,16,57,7,65)(10,67,13,56,25,64)(11,71,14,60,26,62)(12,69,15,58,27,66)(19,38,23,52,36,47)(20,42,24,50,34,45)(21,40,22,54,35,43), (1,25,19,9)(2,27,20,8)(3,26,21,7)(4,29,12,34)(5,28,10,36)(6,30,11,35)(13,23,18,32)(14,22,16,31)(15,24,17,33)(37,60,40,57)(38,59,41,56)(39,58,42,55)(43,65,46,62)(44,64,47,61)(45,63,48,66)(49,67,52,70)(50,72,53,69)(51,71,54,68)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,22,29,19,31,34)(2,23,30,20,32,35)(3,24,28,21,33,36)(4,14,9,12,16,25)(5,15,7,10,17,26)(6,13,8,11,18,27)(37,47,53,40,44,50)(38,48,54,41,45,51)(39,43,49,42,46,52)(55,67,65,58,70,62)(56,68,66,59,71,63)(57,69,61,60,72,64), (1,41,32,49,28,44)(2,39,33,53,29,48)(3,37,31,51,30,46)(4,72,17,55,8,63)(5,70,18,59,9,61)(6,68,16,57,7,65)(10,67,13,56,25,64)(11,71,14,60,26,62)(12,69,15,58,27,66)(19,38,23,52,36,47)(20,42,24,50,34,45)(21,40,22,54,35,43), (1,25,19,9)(2,27,20,8)(3,26,21,7)(4,29,12,34)(5,28,10,36)(6,30,11,35)(13,23,18,32)(14,22,16,31)(15,24,17,33)(37,60,40,57)(38,59,41,56)(39,58,42,55)(43,65,46,62)(44,64,47,61)(45,63,48,66)(49,67,52,70)(50,72,53,69)(51,71,54,68) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,22,29,19,31,34),(2,23,30,20,32,35),(3,24,28,21,33,36),(4,14,9,12,16,25),(5,15,7,10,17,26),(6,13,8,11,18,27),(37,47,53,40,44,50),(38,48,54,41,45,51),(39,43,49,42,46,52),(55,67,65,58,70,62),(56,68,66,59,71,63),(57,69,61,60,72,64)], [(1,41,32,49,28,44),(2,39,33,53,29,48),(3,37,31,51,30,46),(4,72,17,55,8,63),(5,70,18,59,9,61),(6,68,16,57,7,65),(10,67,13,56,25,64),(11,71,14,60,26,62),(12,69,15,58,27,66),(19,38,23,52,36,47),(20,42,24,50,34,45),(21,40,22,54,35,43)], [(1,25,19,9),(2,27,20,8),(3,26,21,7),(4,29,12,34),(5,28,10,36),(6,30,11,35),(13,23,18,32),(14,22,16,31),(15,24,17,33),(37,60,40,57),(38,59,41,56),(39,58,42,55),(43,65,46,62),(44,64,47,61),(45,63,48,66),(49,67,52,70),(50,72,53,69),(51,71,54,68)]])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 4C | 4D | 4E | 6A | ··· | 6E | 6F | ··· | 6V | 6W | 6X | 6Y | 6Z | 6AA | 12A | 12B | 12C | 12D | 12E |
order | 1 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 2 | 6 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | 18 | 27 | 27 | 54 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | 12 | 12 | 12 | 36 | 12 | 12 | 12 | 12 | 36 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D6 | D6 | D6 | D6 | D6 | C4○D4 | S32 | D4⋊2S3 | C2×S32 | D6.4D6 |
kernel | C62.91D6 | S3×C3⋊Dic3 | Dic3×C3⋊S3 | C33⋊6D4 | C33⋊4Q8 | C32×C3⋊D4 | C3×C32⋊7D4 | C2×C33⋊5C4 | C3×C3⋊D4 | C32⋊7D4 | C3×Dic3 | C3⋊Dic3 | S3×C6 | C2×C3⋊S3 | C62 | C33 | C2×C6 | C32 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 5 | 2 | 4 | 5 | 4 | 8 |
Matrix representation of C62.91D6 ►in GL8(𝔽13)
1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
5 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,5,12,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[5,11,0,0,0,0,0,0,12,8,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0] >;
C62.91D6 in GAP, Magma, Sage, TeX
C_6^2._{91}D_6
% in TeX
G:=Group("C6^2.91D6");
// GroupNames label
G:=SmallGroup(432,676);
// by ID
G=gap.SmallGroup(432,676);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,135,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=c^6=1,d^2=b^3,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations